

IEEE Global Communications Conference **GLOBECOM®** IEEE Global Communications Conference 4–8 December 2023 // Kuala Lumpur, Malaysia

DeepISL: Joint Optimization of LEO Inter-Satellite Link Planning and Power Allocation via Parameterized Deep Reinforcement Learning

Authors : Yue Li, **Jiangtao Luo***, Yongyi Ran, Jiahao Pi **Presenter**: **Jiangtao Luo** (CQUPT, China)

Dec 6, 2023

- One of the Flagship or Top Conferences (旗舰或顶会) in Communications.
 - IEEE Global Communications Conference (**GLOBECOM**)
 - IEEE International Conference on Communications (ICC)
- Conference Site: Kuala Lumpur, Malaysia (马来西亚吉隆坡)

PETRONAS Twin Towers

Kuala Lumpur Convention Centre

Oral Presentation

About my team

B	Dr. Prof. LUO, Jiangtao	Vehicular networks, Satellite Internet (Nankai Univ., CAS, Shanghai Jiao Tong Univ.)	
	Prof. PENG, Daqin	Mobile Communications, Mobile IoT one of the earliest TD-SCDMA specialist	
100	Dr. Prof. XU, Guoliang	Mobile Big Data, Computer Vision, Fiber sensing (Tsinghua Univ., CAS)	
	Prof. WANG, Qianzhu	Mobile Communications, Mobile IoT	
	Dr. ZHANG, Changhong	Antenna Design (UESTC, CAS, Shanghai Jiao Tong Univ.)	
	Dr. RAN, Yongyi	Data Center Networking, Satellite Internet (USTC/USTC/USTC, NTU)	

1

Problem and Approach

Evaluation and Results

- 1. Background and Motivation
- Mega LEO Constellations are being built all over the world
- Inter-Satellite Links (ISLs) offer relays, collaboration, path redundancy and resilience.
- Static scheme is simple but excessively redundant and needs more energy!

唐魏雪七湾

Static Scheme (+Grid)

Dynamic Planning EEE GLOBECOM 2023

How to setup ISLs on-demand and adaptable?

□ Challenges

- Beam steering and tracking
- High-speed movement of satellites
- Interference management and channels allocation
- Power and energy management
- Limited resources on-board

Existing solutions

- Greedy Matching [2]
- ILP [3]
- MA-DRL [4]
- [2] I. Leyva-Mayorga, GLOBECOM 2021[3] Z. Yan, WCL, 2020[4] J. Pi, ICC 2022 (our previous work)

Can we combine dynamic power allocation with dynamic setup of ISLs?

Higher energy efficiency

System Model

□ Basic ideas

- Every satellite has an agent.
- Every satellite selects its target peer on the right orbit to establish an ISL, based on the observed system states.
- Intra-plane ISLs do not change.
- NO ISL exists across the Seam.

U

Seam

Candidate satellites > to be selected by satellite u.

IEEE GLOBECOM 2023

Related Models

Energy efficiency model :

Doubly constrained of rate :

$$\lambda \omega_{u,t} / \delta(t) \leq R_{e_{uv,t}} \leq \omega_{u,t} / \delta(t)$$
Faction factor: minimum ratio of data

Satisfaction factor: minimum ratio of data transmitted

[8] M. Marchese, IEEE Tran. on Green Comm. and Net., 4(3), 2020.

Energy model :

Solar energy harvested :

Related Models

Switching cost model :

The steering angle of satellite u:

$$\theta_{u} = \arccos\left(\frac{\left(d_{|uv_{1}|}\right)^{2} + \left(d_{|uv_{2}|}\right)^{2} - \left(d_{|v_{1}v_{2}|}\right)^{2}}{2 \cdot d_{|uv_{1}|} \cdot d_{|uv_{2}|}}\right)$$

Average antenna steering angle

$$\hat{\theta}_{u,t} = \frac{\sum_{v_1 \neq v_2 \in Y_{u,t}^+} \theta_u + \sum_{v_1 \neq v_2 \in Y_{u,t}^-} \theta_u}{\binom{N_{u,t}^+}{2} + \binom{N_{u,t}^-}{2}}$$

Mean antenna steering angle

$$\theta_{uv,t} = \begin{cases} 0, & e_{uv} \in E_{t-1} \\ \hat{\theta}_{u,t} + \hat{\theta}_{v,t}, & e_{uv} \notin E_{t-1} \end{cases}$$

[4] J. Pi, ICC 2022.

The switching costs are assumed proportional to the steering angle, Switching cost $\propto \theta_{uv}$

IEEE GLOBECOM 2023

MA-DRL based Approach

State Space :

$$S_i = \left\{ \boldsymbol{D}_{i,t}, C_{i,t}, \omega_{i,t} \right\}$$

{ Distance to target satellites; Battery capacity; Data bytes to transmit }

Action :

$$a_{i,t} = \{v_{i,t}, p_{i,t}\}$$

{Selected target satellites (discrete); Allocated power (continuous)}

A hybrid action apace calls for parameterized DRL approach. <u>Reward Function</u>:

$$RWD = \sum_{i=1}^{n} r_{i,t},$$

$$r_{i,t} = \kappa_i \left(\alpha_1 E_{eff,t}^{iv_{i,t}} + \alpha_2 R_{e_{iv_{i,t},t}} \right) - \alpha_3 \theta_{iv_{i,t},t}$$
Conflict factor EE Reward TR reward Switching cost

Procedure of DeepISL algor.

Algorithm 1: Training process of DeepISL					
1 for agent $i = 1, N_n$ do					
2	Initialize deterministic strategy network $\mu_{v_i}(\theta_i)$ and				
	value network $Q_{i}(w_{i})$, learning rate α,β and				
	probability ξ . Initialize the experience pool Γ				
3 e	nd				
4 for $episode = 1$ to M' do					
5	for agent $i = 1, N_n$ do				
6	Observe the state $s_{i,t}$				
7	Obtain continuous parameter $p_{v_{i,t}} \leftarrow \mu_{v_i}(\theta_i)$.				
8	Obtain discrete action by				
	$v_{i,t} = argmax_{v_i \in V_i}Q\left(s_{i,t}, \left(V_i, p_{V_i} ight); w_i ight)$				
9	Select action $a_{i,t}$ according to ξ -greedy strategy				
10	Execute $a_{i,t}$ and observe $r_{i,t}$ and $s_{i,t+1}$				
11	Store transition $[s_{i,t}, s_{i,t+1}, a_{i,t}, r_{i,t}]$ into Γ				
12	end				
13 end					
14 fe	or agent $i = 1, N_n$ do				
15	Randomly draw a batch of $[s_b, s_{b+1}, a_b, r_b]_{b \in \overline{B}}$ from Γ				
	$y_b = r_b + \gamma \max_{v \in V} Q\left(s_{b+1}, v, \mu_{v_i}\left(s_{b+1}; heta_t ight); w_t ight)$				
	Calculate $\ell_t(w_i)$ and $\ell_t(\theta_i)$ according to Equations				
	(25) and (26)				
16	Update the network parameters w_i and θ_i according to				
	Equations (28) and (29)				
17 end					
	IEEE GLOBECOM				

3. Evaluation and Results

Image: Metrics

- Mean energy efficiency:
 - the ratio of the sum of the energy efficiency of each inter-plane ISL to the total number of inter-plane ISLs.
- Mean throughput:
 - the ratio of the sum of the throughput of each inter-plane ISL to the total number of inter-plane ISLs.
- <u>Switching ratio</u>:
 - the ratio of switched inter-plane ISLs to the total inter-plane ISLs.

Comparison Algorithms

a) <u>GIEM</u>: Greedy Independent Experiments Matching [2]

From [2] I. Leyva-Mayorga, TWC, 20(6), 2021.

- b) <u>DY-DQN</u> : relax continuous power allocation to discrete power allocation
- c) <u>FP-DQN</u> : fixed power allocation

Derived from DeepISL.

3. Evaluation and Results

Parameter	Symbol	Value
Number of satellites	N	66
Number of orbital planes	M	6
Altitude of orbital planes	H	780 Km
Inclination of orbital planes	ϵ_m	86.4 deg
Carrier frequency in the Ka-band	f	23.28 GHz
Carrier bandwidth	B	15 MHz
Quality factors	G_{rec}/T_e	8 dB/K
The size of each packet	F_{f}	1500B
The duration of the time slot	$\delta(t)$	300 s
Number of inter-plane transceivers	Q	2
Satisfaction factor	λ	$\{0.85, 0.9, 0.95\}$
Probability of greedy strategy	ξ	0.8
Size of the Mini-batch	\overline{B}	1024
Capacity of the experience memory	Memory	10000
Lerning rate	α, β	0.0095
Discount factor	γ	0.95
Weight factors	$\alpha_1, \alpha_2, \alpha_3$	1, 0.1, 1

Evaluation Parameter Setting

Convergence of DeepISL for training with different amounts of data packets.

3. Evaluation and Results

2. DeepISL and DY-DQN, FP-

IEEE GLOBECOM 2023

DQN performs close.

2. DeepISL and GIEM performs

close, but better than others.

- 2. As traffic load increases, EE decreases.
- 3. DY-DQN performs close to DeepISL.

4. Conclusions

- Discussed the joint problem of dynamic ISL setup with dynamic power allocation.
- Formulated it into a joint optimization problem about target satellite selection and transmission power allocation to maximize energy efficiency and transmission rate with minimum switching costs.
- Solve it using a parameterized deep reinforcement learning method, called *DeepISL*.
- In the future, integrate routing with DeepISL to optimize its end-to-end performance.

Thanks for Your Attention

Email: Luojt@cqupt.edu.cn

Original Paper:

DeepISL: Joint Optimization of LEO Inter-Satellite Link Planning and Power Allocation via Parameterized Deep Reinforcement Learning

IEEE GLOBECOM 2023